Linear Algebra
🌃

MLP / CNN 모델 만들기

1. MLP (Feed Forward Network)

import torch import torch.nn as nn import torchvision import torchvision.transforms as transforms import matplotlib.pyplot as plt # Device configuration device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(device) # Hyper-parameters input_size = 784 # 28x28 hidden_size = 500 num_classes = 10 num_epochs = 2 batch_size = 100 learning_rate = 0.001 # MNIST dataset train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor()) # Data loader train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) examples = iter(test_loader) example_data, example_targets = examples.next() print(example_data.shape) print(example_targets.shape) for i in range(6): plt.subplot(2,3,i+1) plt.imshow(example_data[i][0], cmap='gray') plt.show() # Fully connected neural network with one hidden layer class NeuralNet(nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(NeuralNet, self).__init__() self.input_size = input_size self.l1 = nn.Linear(input_size, hidden_size) self.relu = nn.ReLU() self.l2 = nn.Linear(hidden_size, num_classes) def forward(self, x): out = self.l1(x) out = self.relu(out) out = self.l2(out) # no activation and no softmax at the end return out model = NeuralNet(input_size, hidden_size, num_classes).to(device) # Loss and optimizer criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # Train the model n_total_steps = len(train_loader) for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # origin shape: [100, 1, 28, 28] # resized: [100, 784] images = images.reshape(-1, 28*28).to(device) labels = labels.to(device) # Forward pass outputs = model(images) loss = criterion(outputs, labels) # Backward and optimize optimizer.zero_grad() loss.backward() optimizer.step() if (i+1) % 100 == 0: print (f'Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.4f}') # Test the model # In test phase, we don't need to compute gradients (for memory efficiency) with torch.no_grad(): n_correct = 0 n_samples = 0 for images, labels in test_loader: images = images.reshape(-1, 28*28).to(device) labels = labels.to(device) outputs = model(images) # max returns (value ,index) _, predicted = torch.max(outputs.data, 1) n_samples += labels.size(0) n_correct += (predicted == labels).sum().item() acc = 100.0 * n_correct / n_samples print(f'Accuracy of the network on the 10000 test images: {acc} %')
Python
복사

2. CNN (Convolutional Neural Network)

import torch import torch.nn as nn import torch.nn.functional as F import torchvision import torchvision.transforms as transforms import matplotlib.pyplot as plt import numpy as np # Device configuration device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Hyper-parameters num_epochs = 5 batch_size = 4 learning_rate = 0.001 # dataset has PILImage images of range [0, 1]. # We transform them to Tensors of normalized range [-1, 1] transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) # CIFAR10: 60000 32x32 color images in 10 classes, with 6000 images per class train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') def imshow(img): img = img / 2 + 0.5 # unnormalize npimg = img.numpy() plt.imshow(np.transpose(npimg, (1, 2, 0))) plt.show() # get some random training images dataiter = iter(train_loader) images, labels = dataiter.next() # show images imshow(torchvision.utils.make_grid(images)) class ConvNet(nn.Module): def __init__(self): super(ConvNet, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): # -> n, 3, 32, 32 x = self.pool(F.relu(self.conv1(x))) # -> n, 6, 14, 14 x = self.pool(F.relu(self.conv2(x))) # -> n, 16, 5, 5 x = x.view(-1, 16 * 5 * 5) # -> n, 400 x = F.relu(self.fc1(x)) # -> n, 120 x = F.relu(self.fc2(x)) # -> n, 84 x = self.fc3(x) # -> n, 10 return x model = ConvNet().to(device) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) n_total_steps = len(train_loader) for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # origin shape: [4, 3, 32, 32] = 4, 3, 1024 # input_layer: 3 input channels, 6 output channels, 5 kernel size images = images.to(device) labels = labels.to(device) # Forward pass outputs = model(images) loss = criterion(outputs, labels) # Backward and optimize optimizer.zero_grad() loss.backward() optimizer.step() if (i+1) % 2000 == 0: print (f'Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.4f}') print('Finished Training') PATH = './cnn.pth' torch.save(model.state_dict(), PATH)
Python
복사